全国耕地质量现状与新型肥料发展-基于几个重大项目的宏观分析

Current Situation of Chinese Soil Quality and New Type
Fertilizer Development Approach
-Macroscopic Analysis of Results from Several National Program

田有国博士/研究员 Prof.Dr. Tian Youguo

北京/Beijing 2013.01.31

- ■几个基本概念的辨析
- ■我国耕地质量总体状况
- ■耕地质量建设和管理对策
- ■新型肥料发展方向

土地、土壤、农用地、耕地

- 土地(Land)包含地球特定地域表面及以上和以下的大气、 土壤及基础地质、水文和植被。它还包含这一地域范围内 过去和目前人类活动的种种结果,以及动物就它们对目前 和未来人类利用土地所施加的重要影响(FAO, 1972; UN 《土地评价纲要》,1975)
- 土地质量是指土地的状态和条件(土壤、水及生物特性),及其满足人类需求(农林业生产,自然保护以及环境管理)的程度。土地质量评价主要应用于土地资源管理与利用决策。(FAO、《土地评价纲要》,1975; D.Dent and A. Yong,1981)

- 《土地管理法》将我国土地分为三大类,即农用地、建设用地和木利用地。建设用地是指建造建筑物、构筑物的土地,包括城乡住宅和公共设施用地、工矿用地、交通、水利设施用地、旅游用地、军事设施用地等;未利用地是指农用地和建设用地以外的土地。
- 农用地(Farming land)是指直接用于农业生产的土地,包括耕地、林地、草地、农田水利用地、养殖水面等(《土地管理法》,1986,1998,2004)。

- 土壤(Soil)是指具有一定的肥力,能够生长植物的那一部分疏松表层。
- 土壤是由固体、液体和气体3类物质组成的。固体物质包括土壤矿物质、有机质和微生物等。液体物质主要指土壤水分。气体是存在于土壤孔隙中的空气。
- 简单的说土壤分为耕型、非耕型。耕型土壤就是 指耕地土壤。

■ 耕地(Arable land)的定义在我国最早出自全国农业区划委 员会和原国家土地管理局制定的《土地利用现状调查技术 规程》(1984)。《规程》将土地分为8个1级类,包括: 耕地、园地、林地、牧草地、城镇村及工矿用地、交通用 地、水域和未利用土地。其中, 耕地指种植农作物的土 地,包括新开荒地、休闲地、轮歇地、旱田轮作地;以种 植农作物为主,"间有零星果树、桑树或其他树木的土 地;耕种3年以上的滩涂和海涂。"《规程》还将耕地分为 5个2级类,灌溉水田、望天田、水浇地、旱地、菜地。

	土地利用现状分类					
三大类		级类	二级类			
	类别编码	类别名称	类别编码	类别名称		
	01		011	水田		
		耕地	012	水浇地		
			013	早地		
	02		021	果园		
		园地	022	茶园		
			023	其他园地		
衣	03		031	有林地		
用		林地	032	灌木林地		
74			033	其他林地		
地	04	草地	041	天然牧草地		
		7.2	042	人工牧草地		
	10	交通用地	104	农村道路		
	11	水域及水利设施用地	114	坑塘水面		
		小纵及小利反配用题	117	构集		
	12	其他土地	122	设施农用地		
		兴 博工地	123	田坎		

(《中华人民共和国土地管理法》,1998)

耕地定义为"种植农作物的土地",包括熟地、新开发、复垦、整理地,休 闲地(含轮歇地、轮作地);以种植农作物(含蔬菜)为主,间有零 星果树、桑树或其他树木的土地; 平均每年能保证收获一季的已垦滩 地和海涂。耕地中包括南方宽度<1.0米,北方宽度<2.0米固定的沟、 渠、路和地坎(埂);临时种植药材、草皮、花卉、苗木等的耕地,以 及其他临时改变用途的耕地。二级地类里包括用于种植水稻、莲藕等 水生农作物的耕地。包括实行水生、旱生农作物轮种的水田、有水源 保证和灌溉设施,在一般年景能正常灌溉,种植旱生农作物和种植蔬 菜等的非工厂化的大棚的水浇地,以及无灌溉设施,主要靠天然降水 种植旱生农作物的耕地,包括没有灌溉设施仅靠引洪淤灌的<mark>旱地</mark> (GB/T 21010-2007) .

一级类		二级类							
编码	名称	编码	名称	含 义					
01	耕地			指种植农作物的土地,包括熟地,新开发、复垦、整理地,休闲地(含轮歇地、轮作地);以种植农作物(含蔬菜)为主,间有零星果树、桑树或其他树木的土地;平均每年能保证收获一季的已垦滩地和海涂。耕地中包括南方宽度<1.0 m、北方宽度<2.0 m 固定的沟、渠、路和地坎(增); 胜时独植药材、草皮、花卉、苏木等的耕地,以及其他临时改变用					
		011	水田	指用于种植水稻、莲藕等水生农作物的耕地。包括实行水生、旱生农作物轮种的耕地。					
		012	水浇地	指有水源保证和灌溉设施,在一般年景能正常灌溉,种植旱生农作物的耕地。包括种植蔬菜等的非工厂化的大棚用地。					
		013	早地	指无灌溉设施,主要靠天然降水种植早生农作物的耕地,包括没有灌溉设施,仅靠引洪淤灌的耕地。					
02	园地			指种植以采集果、叶、根、茎、汁等为主的集约经营的多年生水本和草本作物,覆盖度大于50%或每亩株数大于合理株数70%的土地。包括用于育苗的土地。					
		021	果园	指种植果树的园地。					
		022	茶园	指种植茶树的园地。					

土壤养分、土壤肥力、土壤生产力、 耕地地力

土壤养分(Soil nutrients):由土壤提供的植物生长所必需的营养元素。包括碳(C)、氮(N)、氧(O)、氢(H)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、锰(Mn)、钼(Mo)、锌(Zn)、铜(Cu)、硼(B)、氯(CI)等16种。其中碳、氢、氧主要来自大气和水,其余13种来自土壤。

- 土壤肥力(Soil fertility)人们很早就进行了许多研究,泰伊尔提出腐植质学说;李比西的矿质营养学说;威谦士的团粒结构学说等,至今没有一个比较统一的认识。最近国际上有人提出土壤生物肥力的概念,但测定比较困难而且昂贵,也没有通用的标准。
- 在我国,比较广泛承认的土壤肥力是指土壤水、肥、气、热、生四个因素同时供给作物生活需要的能力,也就是说土壤供应和协调作物生长所需的营养和环境因素的能力。

- 土壤生产力(Soil productivity)是经济学中概念。 土壤生产力是土壤在一定利用方式下土壤所表现 出土壤生产能力和土壤肥力水平发挥的大小;是 在一定经济和技术条件下,以所生产的物质的产量和质量表现的土壤品质。
- 土壤生产力是在土壤肥力基础上包含了土壤管理 因素的综合概念。土壤生产力是土壤质量的核心 部分,它主要包括了土壤保持生物生产力的能 力,但是高质量的土壤不仅能够支持粮食和作物 的生产,还应该能保持自然生态系统的稳定和改 善空气和水质量。

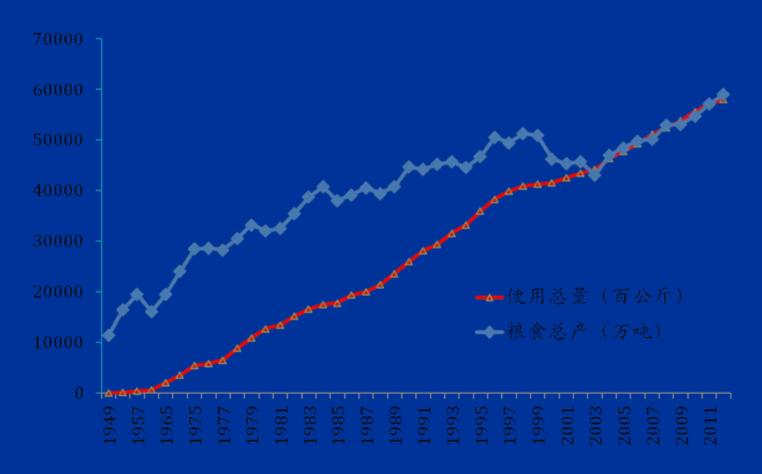
■ 耕地基础地力(Soil fundamental fertility)指在特 定区域内的特定的土壤类型上,立足于耕地自身 素质, 针对地力建设与土壤改良目标, 确定的地 力要素的总和。它是一个反映耕地内在的、基本 素质的地力要素所构成的基础地力的概念(王蓉芳、 田有国等, 1996)。它与土壤质量、土壤健康、 土壤肥力、土壤生产力等有广泛而深刻的联系, 但同时又有明显的区别。

■土壤基础地力的三个组成要素:

立地条件 土壤条件 基础设施及培肥水平

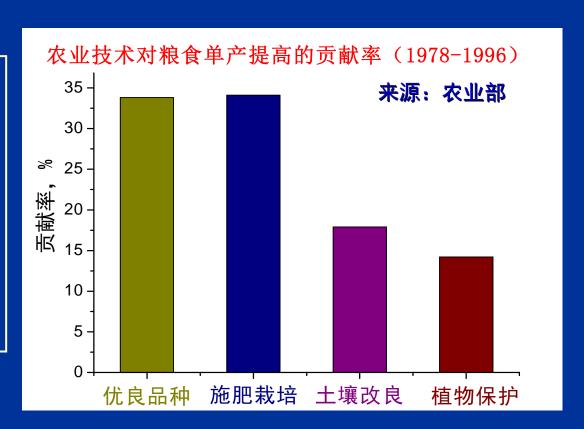
土壤质量、土壤健康、耕地质量

- 土壤质量(Soil quality)在自然或管理的生态系统边界内,土壤具有动植物生产持续性,保持和提高水、空气质量以及支撑人类健康与生活的能力(SSSA, Soil Science Society of America, 1995; Karlen et al., 1997)。
- 土壤质量是指土壤提供植物养分和生产生物物质的土壤肥力质量,容纳、吸收、净化污染物的土壤环境质量,以及维护保障人类和动植物健康的土壤健康质量的总和(曹志洪、周健民)。

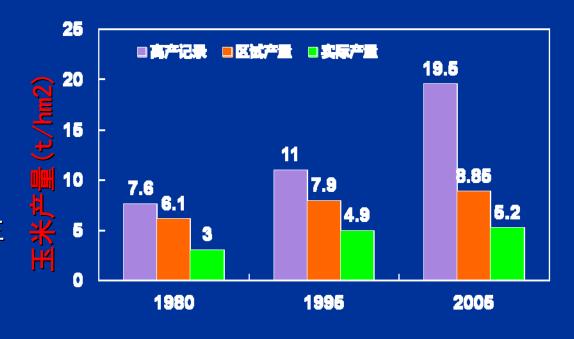

■ 土壤质量的研究最初集中于生产食物和纤维的农业土壤,这时候就称之为耕地质量(Arable land quality)。后来,土壤质量的概念扩展到了牧场土壤和森林土壤,以后又包含了受工业、军事、建筑和采矿影响的土壤,城市土壤以及使用污泥、固体废弃物的农业用地。这就是为什么国际上没有专门的耕地质量的定义的原因。

土壤质量的定义确定了土壤的三项基本功能:土壤生产力,即土壤提高植物和生物生产力的能力(Maintenance of Productivity);环境质量,即土壤降低环境污染物和病菌损害的能力(Prevention of off-site and on-site pollution);动物健康,即土壤质量影响动植物和人类健康的能力(Habitat provision)。这三项功能也被称为土壤肥力质量,土壤环境质量和土壤健康质量。

土壤质量的核心是土壤生产力,基础是土壤肥力。


土壤健康(Soil health)是与土壤质量非常接近的一个概念, 在许多人看来,这两者是通用的,但是也有一些研究者认 为他们之间存在一些差别。使用这两个不同的名词也反映 了人们的不同认识。土壤质量(Soil quality)是土壤的内在属 性,可以称作土壤内在质量(Soil inherent quality),它是 由土壤的发生过程决定的,每个土壤具有其自然的运行能 力,这一内在属性可以由一系列反映土壤执行特定功能的 全部潜力的参数确定;土壤健康(Soil health)是土壤的健康 状况,可以称作土壤动态质量(Soil dynamic quality),它假 定土壤在合适的管理措施下可以发挥其最大潜力,此时具 有最好的土壤质量,否则具有差的土壤质量。

- 土壤质量的核心是耕地生产力,基础是土壤肥力。
- 土壤肥力是土壤质量的重要特征,是作物 高产稳产的保证,也是可持续生产力的基 础。
- 对农业土壤(耕地)来说,更关心肥力质量!


粮食产量伴随着化肥施用量的增加而增长。粮食单产水平也伴随着化肥施用量的增加而提高。

大量数据表明: 粮食增产中,土壤改 良和培肥技术的贡献 率占1/3强 (相当于优良品种)

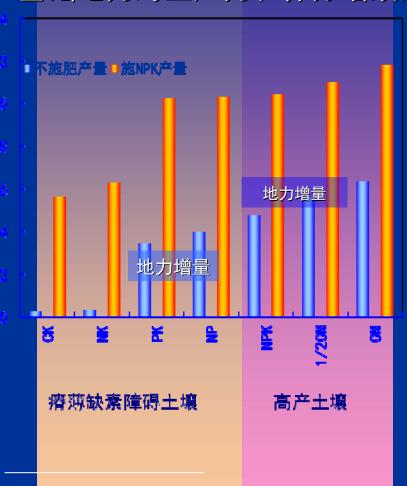
土壤改良与培肥 土壤改良与培肥 是提高我国粮食产能的主攻途径!

新品种产量潜力不断扩展 但农田实际产量增长缓慢 耕地(地力)等问题已上升 为田间尺度阻碍产量提高的主 要原因

(张世煌 徐志刚, 2009)

我国三大粮食作物单产(公斤/亩)

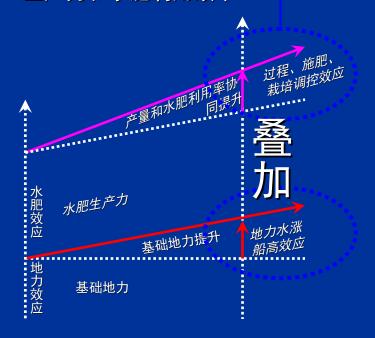
	平均单产	大面积单产记录	增产潜力
水稻	416	750	330
小麦	319	600	280
玉米	360	800	440

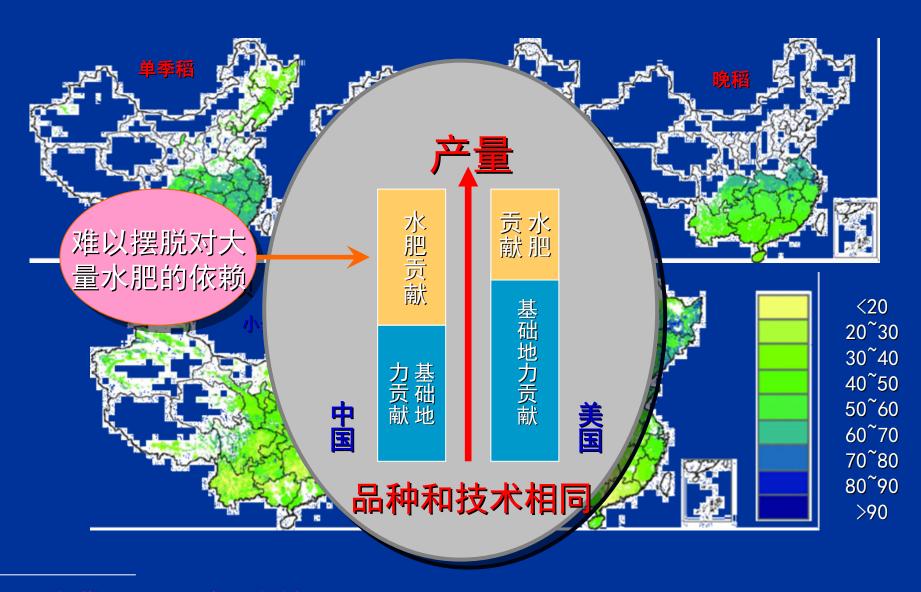


我国耕地质量限制作物增产潜力的主要原因

中低产田比例过高; 耕地质量差,限制了高产品种的增产潜力, 作物产量变动大。

提高耕地质量是发挥我国高产品种增产潜力、保证作物高产稳产的根本途径!

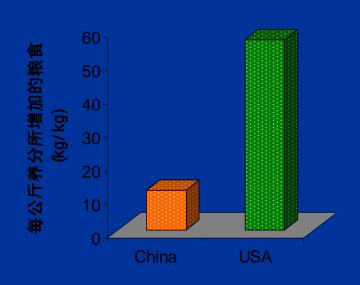

基础地力对生产力和养分增效的贡献

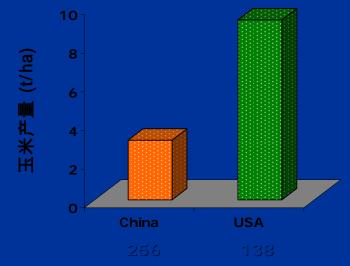

<mark>农田</mark>生态系统重要过程 (973项目) 研究成果 (张佳宝, 2010)

农田生产力和水肥利用 效率协同提高

生产力和水肥利用效率

中国主要作物产量的地力贡献率(%)

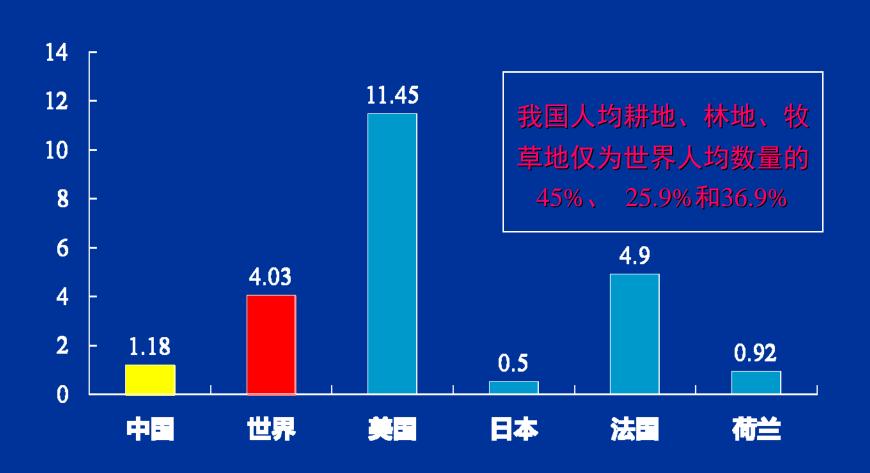

耕地质量差,水肥用量大,施肥效益低,环境污染风险大!


- 肥料利用率: 氮肥30%-35%, 磷肥10%-20%, 钾肥45%左右, 低于发达国家10-20个百分点。
- 每公斤养分所增产的粮食 不及世界的1/2,美国的 1/3

2005年玉米施肥量和产量比较

提高耕地质量是节本增效、生态、 安全农业生产的重要途径!

耕地质量现状与问题


整体质量偏低、中低产田比例大,障碍因素多

退化严重

污染日趋严峻

占优补劣十分普遍

我国人均耕地资源与世界主要国家比较(亩)

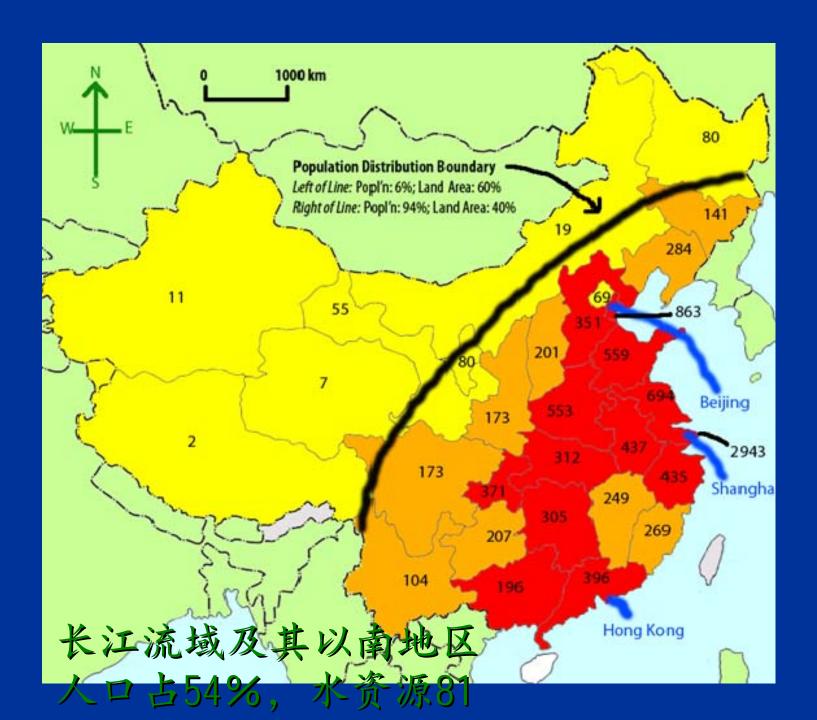


表 中国四个经济区耕地质量状况

Table The status of cultivated land quality in China's four economic regions

地区 耕地面积		耕地质量构成 Cultivated land grade (%)				
Region	Cultivated land area (×10 ⁴ hm ²)	优等 Superior	高等 High	中等 Medium	低等 Low	
西部地区 Western region	4534.22	0.06	14.92	54.25	30.76	
中部地区 Central region	3020.26	8.17	49.64	34.55	7.65	
东部地区 Eastern region	2737.90	3.08	57.14	32.09	7.68	
东北地区 Northeast region	2219.22	_	0.48	88.05	11.47	
合计 Total	12511.60	2.67	29.98	50.64	16.71	

根据《中国耕地质量等级调查与评定》^[13]资料整理。西部地区包括内蒙古、广西、重庆、四川、贵州、云南、西藏、陕西、甘肃、青海、宁夏、新疆等 12 个省(区、市);中部地区包括山西、江西、安徽、河南、湖北、湖南等 6 个省;东部地区包括北京、天津、河北、上海、江苏、浙江、福建、山东、广东、海南等 10 个省(市);东北地区包括辽宁、吉林、黑龙江等 3 个省

陈印军等. 中国耕地质量状况分析, 中国农业科学, 2011, 44(17):3557-3564.

根据自然条件、耕作制度、基础设施、农业生产技术及投入等因素综合调查与评定,中国耕地评定为15 个等别,1 等耕地质量最好,15 等耕地质量最差。根据国土资源部历时10 年完成的《中国耕地质量等级调查与评定》结果,全国耕地质量平均等别为9.8等,其中低于平均质量等别的10-15等地占全国耕地质量等级调查与评定总面积的57%以上,高于平均质量等别的1-9 等地仅占43%,其中生产能力大于15t•hm⁻² 的耕地仅占6.09%。

吴 群. 耕地质量、等别、与价格刍议. 山东省农业管理干部学院学报. 2002. 18(I): 73-76.

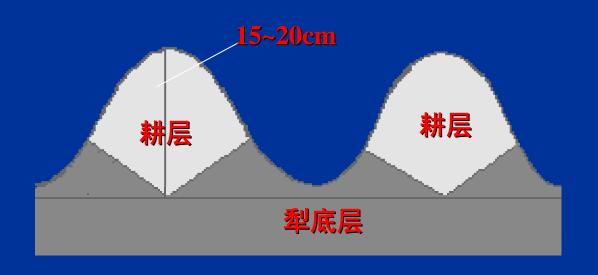
全国分区域不同土壤障碍类型(NY/T 309-1996)

区域	瘠薄 培肥型	干旱 灌溉型	坡地 梯改型	障碍 层次型	盐碱 耕地型	渍潜 稻田型	沙化 耕地型	渍涝 排水型	其他 类型	合计
东北	4.97	4.81	3.44	2.16	0.96	0.17	0.87	0.42	0.00	17.80
华北	8.28	7.53	4.29	1.64	2.41	0.50	2.20	1.38	0.01	28.24
华东	2.44	1.85	0.94	1.59	0.79	1.43	0.01	0.79	0.57	10.42
华南	2.11	1.40	2.28	2.17	0.23	1.68	0.00	0.72	0.58	11.19
西北	5.47	6.52	2.98	1.40	1.73	0.08	1.35	0.00	0.10	19.64
西南	2.58	2.89	4.86	0.97	0.00	0.69	0.02	0.53	0.18	12.73
全国	25.85	25.01	18.78	9.93	6.13	4.56	4.45	3.84	1.45	100.00

注:数据来源于农业部种植业司,2008

赵其国认为中国耕地的土壤质量呈下降趋势:全国耕地有机质含量平均已降到1%,明显低于欧美国家2.5%-4.0%的水平;东北黑土地带土壤有机质含量由刚开垦时的8%-10%已降为目前的1%-5%,中国缺钾耕地面积已占耕地总面积的56%,约50%以上的耕地微量元素缺乏,70%-80%的耕地养分不足,20%-30%的耕地氮养分过量;由于有机肥投入不足,化肥使用不平衡,造成耕地退化,保水保肥的能力下降。

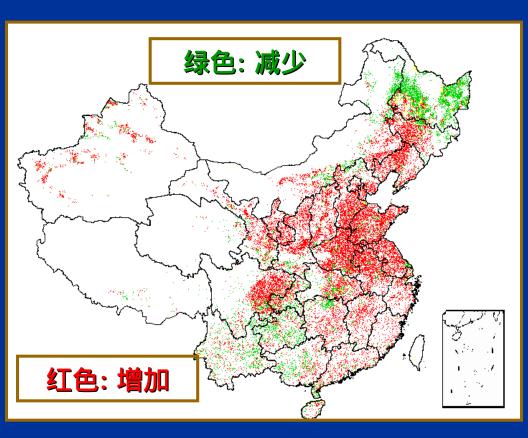
赵其国. 土地资源 大地母亲——必须高度重视我 国土地资源的保护、建设与可持续利用问题.土壤 2004, 36(4): 337-339.

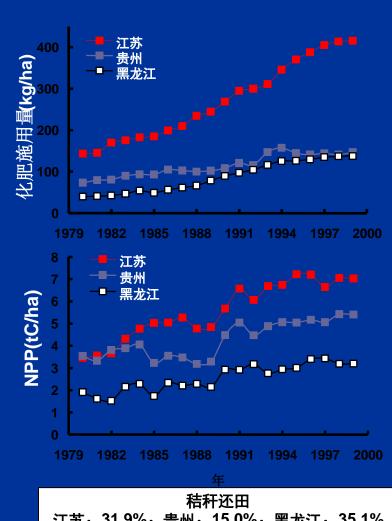

耕层变薄

东北地区: 1983年黑土层厚度约30cm, 2002年仅为25cm,

20年间减少了5cm;

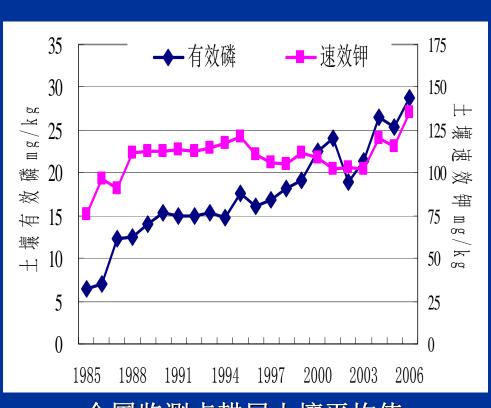
华北地区:连续30多年浅层旋耕,耕层厚度仅为13-15cm,

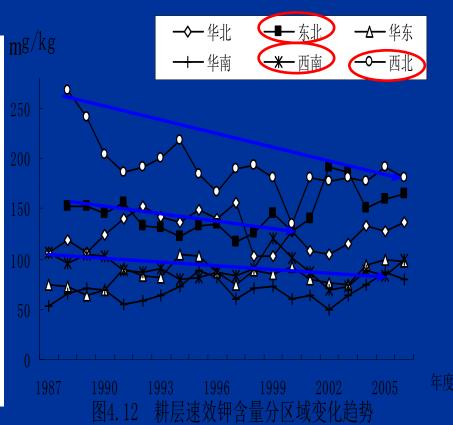

犁底层加厚5-8cm。


长期利用小型拖拉机灭茬、旋耕,耕作深度浅,犁底层增厚

东北黑土"波浪型"土壤剖面 (赵兰坡,2004)

有机质含量偏低, 区域不平衡加剧


农业部2012年土壤监测结果表明,东北黑土区土壤有机质含量为26.7g/kg,与第二次土壤普查结果比减少了12g/kg,降幅31%。西南地区也有所下降。


秸秆还田 江苏: 31.9%; 贵州: 15.0%; 黑龙江: 35.1% (高祥照等,2002)

土壤养分有增有减,呈现为非均衡化

第二次土壤普查以来,全国土壤有效磷增加趋势较为明显,土壤全氮及速效钾含量稍有所增加,其中东北、西北、西南区土壤速效钾有下降趋势。

全国监测点耕层土壤平均值

土壤养分失衡

耕地土壤有效磷平均含量为23.1mg/kg,与第二次土壤普查相比增长了294%,部分中、微量元素补充不足,农作物中、微量元素缺素症表现更加明显,面积不断扩大。

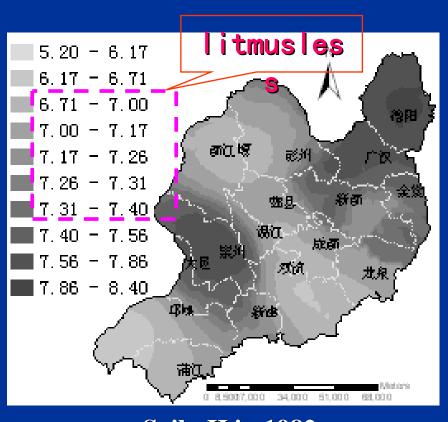
土壤生态功能变差

化学物质大量投入,造成土壤微生物区系失调,耕地土壤生态功能变差,土壤对干旱、重金属污染、养分缺乏等胁迫因子的缓冲作用下降,病虫害频发。

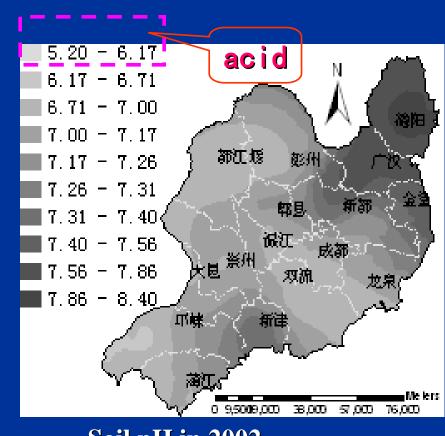
残膜污染严重

我国每年约有50万吨农膜残

留在土壤中, 残膜率达 40%。这些农膜在15~ 20cm土层形成不易透水 、透气的难耕作层,导致 土壤物理结构层次的改 变,使得土壤水分、养 分运移受到阻碍, 土壤 孔隙度、通透性降低, 不利于土壤空气的循环 和交换。



上世纪80年代以来中国主要农田土壤显著酸化,pH值平均下降了约0.5个单位,相当于土壤酸量在原有基础上增加了2.2倍,经济作物体系土壤酸化比粮食作物体系更为严重,北方的石灰性土壤同样出现了酸化,南方大部分地区、胶东半岛和东北部分地区土壤酸化尤为严重,直接影响农业生产。


张福锁等,中国主要农田土壤显著酸化,Science (科学), 2011

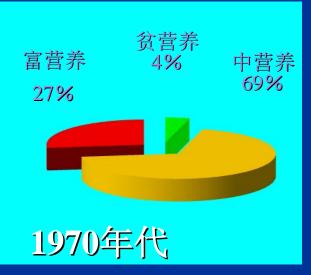
根据2005-2011年测土配方施肥902万个土壤样品测试数据统计分析显示,与30年前的第二次土壤普查相比,全国耕地土壤酸碱性(pH)下降0.13-1.3,平均下降0.8个单位,我国40%的耕地土壤处于pH6.5以下,其中pH4.5以下有1.8%,pH4.5-5.5之间有15.85%,pH5.5-6.5之间有22.7%。

成都平原土壤酸化特征

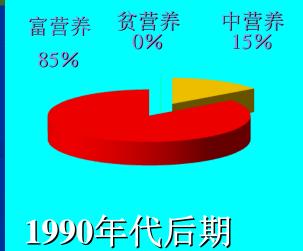
Soil pH in 1982

Soil pH in 2002

20年来(1982-2002),土壤pH平均下降0.5-1个单位,酸化十分严重和普遍。


耕地污染严重

据环保部统计,中国受污染的耕地约有1.5亿亩,污水灌溉污染耕地3250万亩,固体废弃物堆存占地和毁田200万亩,合计约占耕地总面积的1/10以上。



- 一全国各重要水域富营养化
- 一地下水硝酸盐污染严重
- 一影响我国数亿人口的饮用水
- 一严重威胁我国环境安全和经 济可持续发展

耕地耕地占优补劣十分普遍

- 国土资源部门的资料统计,我国平均每10年通过土地开发、土地整理和土地复垦补充耕地4200~7350万亩
- 」这些耕地一般多属于低产田。
- 」这些耕地土壤理化性状差、土壤肥力与生产水 平均很低,需要加大培育基础地力。

余振国等认为中国耕地质量在不断下降,并指出中国耕地质量不断下降的原因主要有:一是非农建设压占良田,而开垦补偿的则是劣质地,造成耕地总体质量下降;二是耕地"用"、"养"不当,引起耕地质量下降;三是耕地退化加剧引起耕地质量不断下降;四是耕地财产权利制度不完善,管理不到位,经营耕地没有长期的、良好的赢利预期,导致掠夺式利用或随意撂荒加剧了耕地质量的下降。

余振国, 胡小平. 我国粮食安全与耕地的数量和质量关系研究. 地理与地理信息科学, 2003, 19(3): 45-49.

耕地质量提升的主要措施(宏观层面)

农业部成立耕地质量管理专门机构 建立耕地质量管理法律体系 建立耕地质量提升的政策支持体系 建立耕地质量的技术支撑体系 建立耕地质量建设监管体系

耕地质量提升的主要措施(中观层面)

开展一轮普查 构建两大平台 启动三大工程

耕地质量是病人,新型肥料是治病的药

开昭英 秘书长 中国无机盐工业协会 钾盐 (肥) 行业分会 据估计,目前我国重金属污染面积达到1.5亿亩,减产粮食 1000多万吨,被重金属污染的粮食每年多达1200万吨,经 济损失200亿元。

新型土壤改良剂的施用可将重金属转化成为难溶的化合物, 减少农作物的吸收。例如: 硅肥施入土壤后,改变了土壤 pH和土壤氧化还原性状,使重金属的活性降低,减少农作 物对重金属的吸收,降低重金属污染的危害程度。

作物	平衡施肥与习惯施肥的肥料利用率(%)					
	氮		磷		钾	
	平衡施肥	农民习惯	平衡施肥	农民习惯	平衡施肥	农民习惯
小麦	32. 0	26. 6	19. 2	16. 6	44. 4	42. 7
水稻	34. 9	29. 7	24. 6	21. 5	41. 1	38. 0
玉米	32. 0	26. 9	25. 0	22. 6	42. 8	38. 7

测土配方施肥项目结果表明,通过平衡施肥主要作物肥料利用率得到全面的普遍的提高。 新型肥料的推广也离不开平衡施肥。 土壤微生物区系失调,耕地土壤生态功能变差,土壤对干旱、重金属污染、养分缺乏等胁迫因子的缓冲作用下降,病虫害频发。需要研究推广新型肥料,特别是各类专用土壤调理剂,针对性的解决这些问题。

农业部耕地地力调查项目结果表明,我国耕地土壤 养分失衡现象严重,据农业部监测,目前耕地土 壤有效磷平均含量为23.1毫克/公斤,与第二次土 壤普查相比增长了298%。 氮磷钾养分供给不平衡 ,肥料农学利用率降低;增强了磷对钙、锌、铁 等元素的"拮抗"作用,降低了中、微量元素有 效性;农作物缺素症表现更加明显,面积不断扩 大。要保持土壤养分的平衡,生物有机肥的是个 重要的发展方向

农业部测土配方施肥项目调查发现,作物品种和产量发生了急剧变化,土壤中量元素的缺素临界值也发生了变化。据最新估测,耕地土壤中量元素钙在缺素临界值以下的占64%,镁占53%、硫占40%;微量元素硼占84%、铁占31%、锌占42%、锰占48%、铜占25%、钼占59%,与第二次土壤普查相比,缺素面积增加近一倍。

所以,中微量元素肥料的研发与推广应用是新型 肥料的发展的重要方向。

- 土壤有机质下降为腐熟菌剂的发展提供了机会。有 机质提升促进秸秆腐熟剂在南方大面积推广,但 是,适合北方冷凉地区的秸秆腐熟剂还很少,研 发低温腐熟菌剂是下一步的主攻方向。
- 南方酸化土壤地区和西北盐碱(渍)化地区是土壤 改良剂的主要开拓区域,硅肥(硅钾肥)施用可 能是酸性土壤改良的较好措施,碳酸钙可能也是 一种比较好的土壤调理剂,磷石膏也是盐渍化土 壤改良可以选择的一个品种。

我国耕地地力中低产田中, 占比 最大的是瘠薄培肥型和干旱灌 溉型,对水溶肥料的发展有了 很高的需求。通过水肥耦合, 也就是土壤体系中水分和养分 形成最佳配比,协同作用,定 时、定量、按需地为作物解决 水分和养分需求,实现高产、 优质、高效、生态、安全。

区域	瘠薄 培肥型	干旱 灌溉型	
	4.97	4.81	
	8.28	7.53	
	2.44	1.85	
华南	2.11	1.40	
西北	5.47	6.52	
西南	2.58	2.89	
全国	25.85	25.01	

数据来源:农业部,2008.%

调查发现,农村普遍存在"一炮轰"和表施、撒施等简单、粗放的施肥方式,所以大力发展机械化种肥同播技术、水肥一体化技术,研发缓控释肥、长效肥料、配方肥料等,是新型肥料发展的一个方向。

迫切需要解决 的是如何更好 的解决耕地质 量问题,满足 要,服务农

